

COLUMBIA RIVER TEMPERATURE TOTAL MAXIMUM DAILY LOAD

TECHNICAL ANALYSIS

Why Develop a Model?

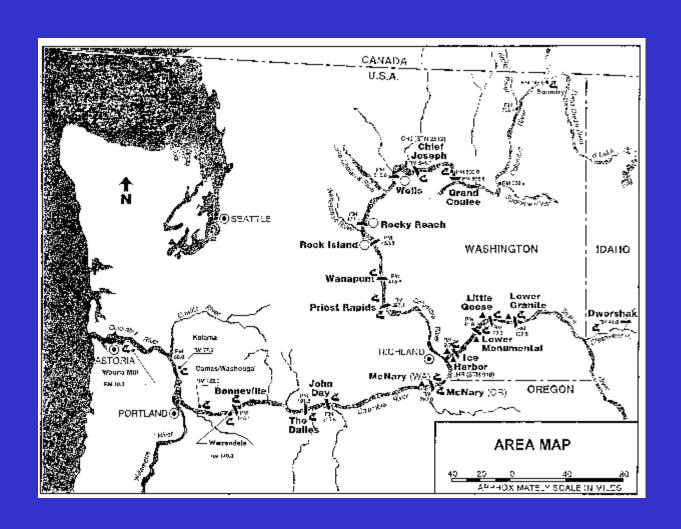
 To determine important processes that affect river temperature

 To quantify the relative impact of different human activities on river temperature

To run "what-if" scenarios

Goals of Model Development

- Develop a temperature model that:
 - accurately simulates river temperatures
 - supports a TMDL analysis
- Keep it non-proprietary, computationally simple and flexible
- Conduct Peer Review
- Build interface and guide for other users


Model Name

- River
- Basin
- Model developed in EPA Region
- **10**

• RBM10 is written in Fortran code and can be adapted to simulate any large scale river

COLUMBIA RIVER

Scale of Analysis - Regional

Geographic Boundaries of Model

- COLUMBIA RIVER from International border to Bonneville Dam
 - extension to Astoria in progress
- SNAKE RIVER from Brownlee Dam to confluence with Columbia

CLEARWATER RIVER from Orofino to confluence with Snake

BACKGROUND CONSIDERATIONS

Water Quality Standards

 Oregon and Washington Standards for Temperature require evaluation of natural conditions

 Need to estimate temperatures in both impounded and un-impounded conditions

System Features

Run-of-River Reservoirs

- Vertical temperature stratification relatively low
- Water surface elevation is relatively constant
 - points to potential utility of 1-D model with constant impoundment elevation
 - previous 1-D studies of Columbia River

Available Data

- On the one hand...
 - Long term records are available for meteorology, tributary flow, and water temperature, enabling:
 - long term simulations
 - evaluation of system variability, and
 - comparison of simulations to monitored temps

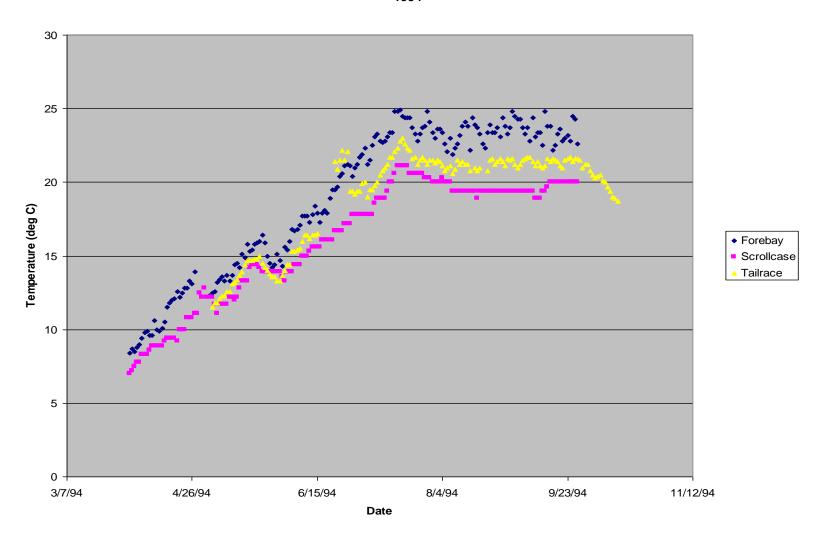
Data Limitations

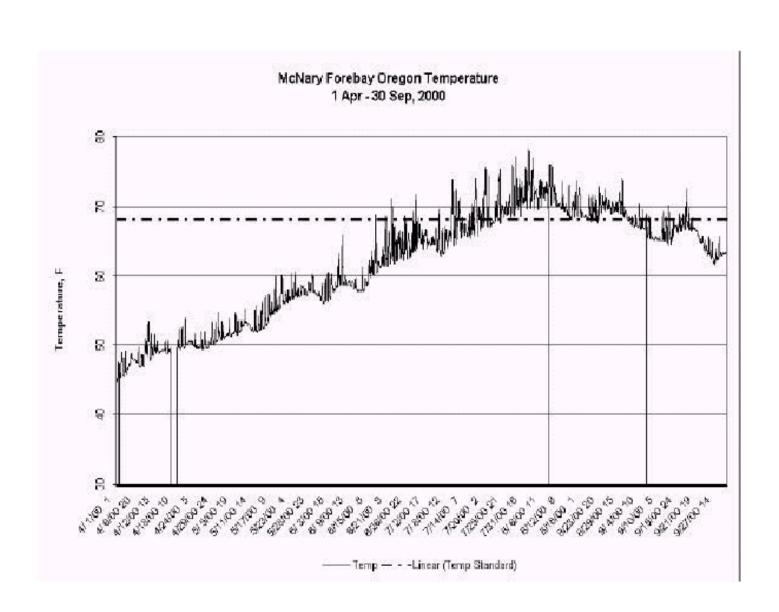
- On the other hand...
 - Mainstem Temperature Monitoring
 - Monitoring at Dams Not Designed for Assessment of River Temperature
 - Limited Quality Control/Quality Assurance
 - Tributary Temperature Monitoring
 - Discontinuous Record
 - Unknown Quality Control/Quality Assurance
 - Meteorology
 - Limited Geographical Coverage

HOW TO ESTIMATE RIVER TEMPERATURE?

Two Ways to Estimate Temperatures

- River Temperature Measurements (Measurement Model)
 - Long term scroll case readings at dams
 - Scarce data from unimpounded river
- Energy Budget (Process Model)


MEASUREMENT MODEL


Concept for Measurement Model

 Cross-sectionally averaged river temperatures can be estimated based upon:

 Temperature Measurements at Dams (Scroll Case, Forebay, and/or Tailrace)

Comparison of Daily Water Temperatures at the Scroll Case, Forebay and Tailrace of Ice Harbor Dam, 1994

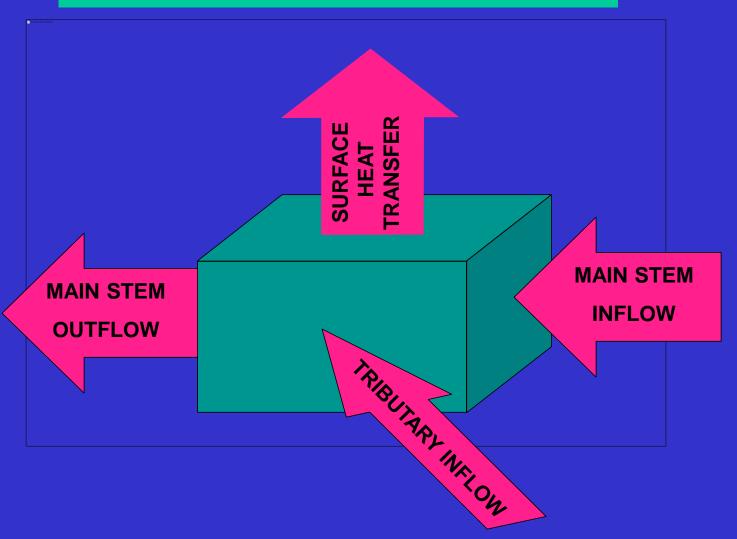
MEASUREMENT MODEL

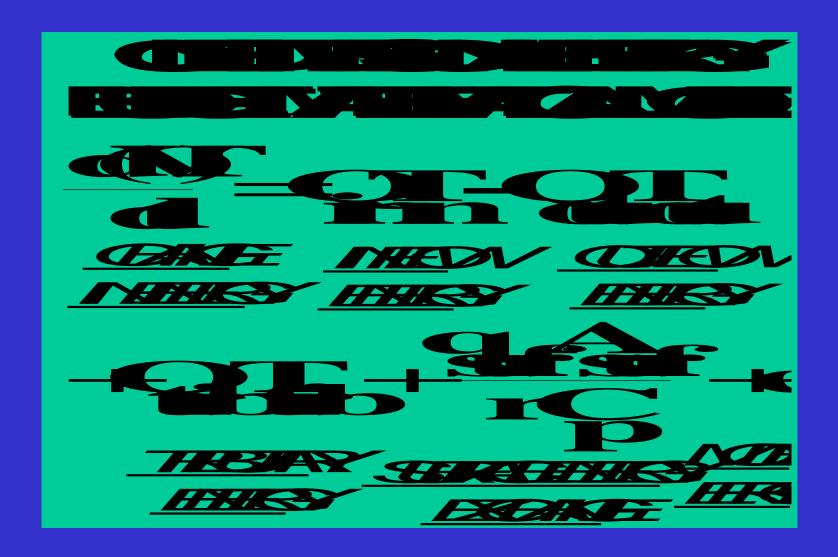
$$\mathbf{T_{Actual}} = \mathbf{T_{Observed}} + \boldsymbol{
u}$$

TRUE STATE OF
TEMPERATURETEMPERATUREMEASUREMENT

<u>MEASUREMENT</u> <u>ERROR</u>

PROCESS MODEL


Why Do We Need Process Model?


- We need to estimate temperatures under un-impounded conditions for which measurement data is scarce
- We have conflicting measurements
- We do not have measurements at all river locations of interest
- We need to estimate influence of different sources

Concept for Process Model

- Cross-sectionally averaged river temperatures can be estimated based upon:
 - river flow and geometry
 - surface heat exchange, and
 - advected river and point source heat

ONE-DIMENSIONAL ENERGY BUDGET MODEL

INFORMATION NEEDS

General

- System Topology
- Latitude of Site
- Day of the Year

River Geometry - Existing and Unimpounded

- Cross-sectional Area
- Width of River
- River Mile

Main Stem

- Main Stem Boundary Inflows
- Main Stem Boundary Temperatures

Tributary

- Tributary and Point Source Flows
- Tributary and Point Source Temperatures

Meteorology

- Cloud Cover
- Dry Bulb Temperature
- Wind Speed
- Vapor Pressure of the Air near the Water Surface
- Atmospheric Pressure

AVAILABLE INFORMATION

Type of Data	EPA's Available Information in Study Area	
Tributary	19 Stations	
Temperature	30 Year Record - Discontinuous - Grab Samples	
Mainstem	Scroll Case, Tailrace, Forebay of USACE Dams	
Temperatures	30 Year Record – Discontinuous – Daily Obs.	
River Geometry	Existing Conditions: Approx. 100 profiles Natural Conditions: Approx. 150 profiles	
Flow	22 USGS Gages	
	30 Year Record – Continuous – Daily Observations	
Meteorology	3 First Order Stations, 2 Local Air Temp Stations 30 Year Record – Continuous – Hourly Observations	

Data Retrieval & Formatting Challenge

- Data Cornucopia
 - large scale, many monitoring locations
 - voluminous data
 - numerous formats, sample types, etc.
 - data gaps
 - outliers
- Making Data Usable for RBM10
 - adhoc utilities for formatting and calculating necessary input data

IMPORTANT ASSUMPTIONS

Important Assumptions

Meteorology

Described by five regional weather stations

Mainstem Flow

- Constant elevation for impounded reaches except
 Grand Coulee
- Leopold relations developed from gradually-varied flow methods for un-impounded reaches

Tributary Temperatures

 Mohseni relations developed from local air temperature and weekly/monthly river monitoring

Important Assumptions

Groundwater

 Hyporheic flow does not significantly change the cross-sectionally averaged temperature in unimpounded conditions

Measurement Model

 Tailrace monitoring represents best available measure of cross-sectionally averaged temperatures

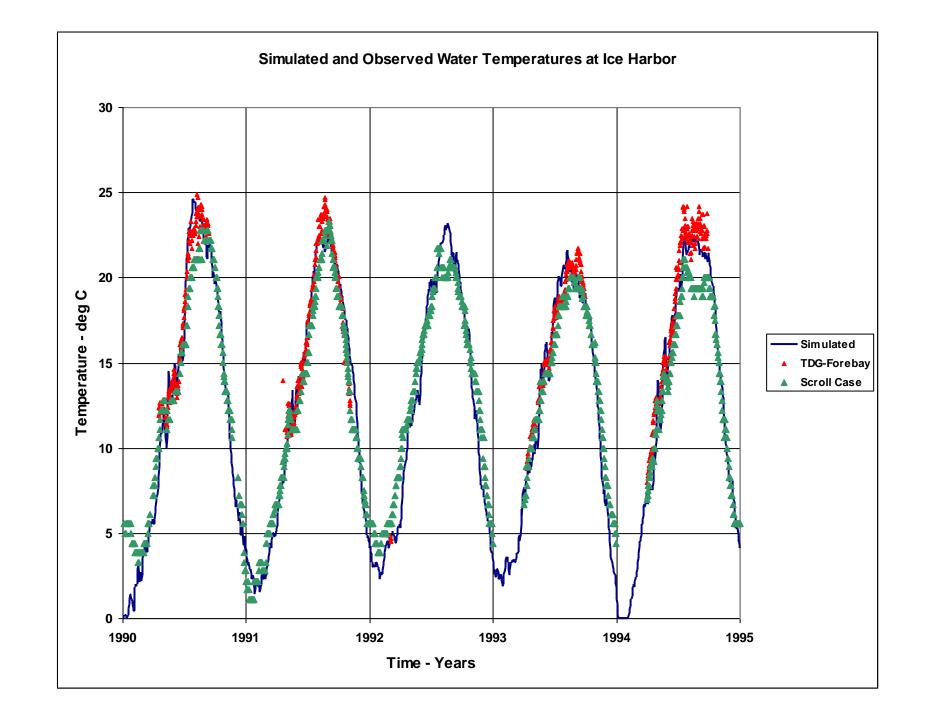
MODEL DEVELOPMENT

TERMINOLOGY

Identification Selection Calibration Parameter **Estimation** Acceptance Verification

MODEL SELECTION

- 1-Dimensional, Time Dependent
- Estimates of Water Temperature from Process and Measurement Models Treated as Random Variables
- Mixed Lagrangian-Eulerian solution technique "Reverse Particle Tracking"
 - reduces error due to numerical dispersion
 - reduces numerical instability
 - reduces computational burden of uncertainty evaluation


PARAMETER ESTIMATION

- Identify parameters that govern rates of energy transfer in the system
 - Some are well known (e.g., solar declination)
 - Some are less well known (e.g., evaporation rates)
- Two parameters that are less known are estimated
 - evaporation rates
 - assignment of area covered by 5 meteorological stations

ACCEPTANCE CRITERIA

- Estimates for evaporation rates and meteorological station assignment are varied to satisfy criteria for model acceptance
- Acceptance criteria:
 - solutions are unbiased; and
 - error is uncorrelated in time

MODEL APPLICATION AND ACCEPTANCE

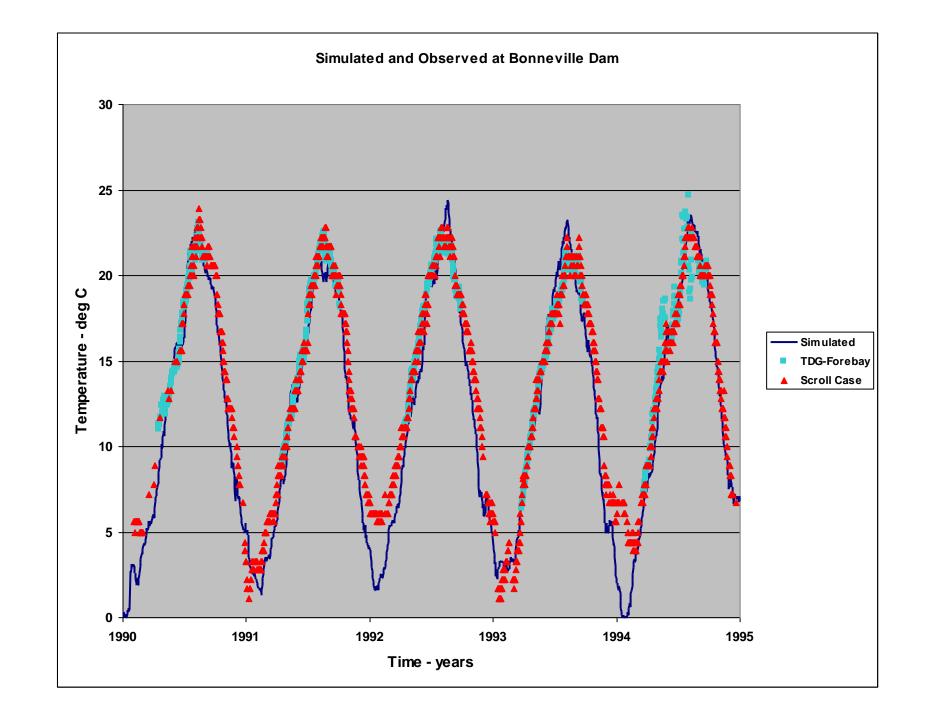


Figure D-6. Regression of observed on simulated at Ice Harbor Dam 1990-1995 $R^2 = 0.9293$ Simulated Temperature - deg **Observed Temperature - deg C**

Figure D-5. Regression of observed on simulated at Bonneville Dam 1990-1995. $R^2 = 0.9035$ Observed Temperature - deg C Simulated Temperature - deg C

RBM10 Results for 1990-1994

Location	Mean Difference (Obs-Sim)	Standard Deviation
Snake River @Ice Harbor	0.05 deg C	1.2
Columbia River @Bonneville	0.04 deg C	1.3

Error Estimates from Other Studies

RISLEY (1997) - Tualatin River
 Max Mean Difference = 3 Deg C
 Mostly < 1 Deg C

• BATTELLE-MASS1 (2001) - Columbia River RMS Error = 0.59 - 1.52 Deg C

HDR/PORTLAND STATE/IPC (1999) - Snake River

AME = 0.6-2.3 Deg C (1992 data)

AME = 0.5-2.0 Deg C (1995 data)

CHEN (1996) - Grande Ronde River

Error = -2.20 - 8.28 Deg C (Summer Max)

Error = -1.21 - 7.69 Deg C (Avg 7-day Max)